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Abstract. The dynamics of a threshold network (TN) with thermal noise on scale-free, random-graph, and
small-world topologies are considered herein. The present analytical study clarifies that there is no phase
transition independent of network structure if temperature T = 0, threshold h = 0 and the probability
distribution degree P (k) satisfies P (0) = D = 0. The emergence of phase transition involving three
parameters, T, h and D is also investigated. We find that a TN with moderate thermal noise extends the
regime of ordered dynamics, compared to a TN in the T = 0 regime or a Random Boolean Network (RBN).
A TN can be continuously reduced to an expression of RBN in the infinite T limit.

PACS. 89.75.Fb Structures and organization in complex systems – 89.20.Hh World Wide Web, Internet
– 05.70.Fh Phase transitions: general studies

1 Introduction

Recently, considerable interest has been expressed in the
formation of complex networks, in their connectivity and
particularly in the dynamics of these networks [1–3]. The
term ‘connectivity’ is defined as a number of links which
are connected to a given node. Many real networks have a
local structure that differ from that of random networks
having finite connectivity. Examples of such networks in-
clude the WWW [4], Internet [5], the gene regulatory net-
work [6], and protein networks [7,8]. These networks ex-
hibit a power-law distribution degree, corresponding to
the distribution of connectivities, which leads to the con-
struction of scale-free models [1]. A scale-free model has
a property whereby a small fraction of the nodes, often
called a hub, is highly connected, whereas the majority of
the nodes have low connectivity. Although the topological
properties of these models have been studied in detail, the
relationship between dynamics of cooperative processes
with some interaction rules and topological structure has
been studied to a lesser extent.

In the present paper, we explore the dynamics of a
threshold network (TN), which is first investigated as di-
luted, asymmetric spin-glass models [12], and asymmet-
ric neural networks [13,14]. A network of such interaction
rules with non-trivial random topology is of interest as
a theoretical framework for investigating the basic prop-
erties of natural dynamical networks. Moreover, applica-
tions such as improved information processing in neural
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networks by controlling the noise of interaction rules and
network topology or capturing the essentials of gene regu-
latory networks in a biological system with a given hierar-
chical topology may be derived from such a theoretical ‘toy
model’. The TN is closely related to the Random Boolean
Network (RBN) first introduced by Kauffman [9,10] to
model rule-based gene regulatory networks. We herein in-
troduce a thermal noise parameter T , by which a TN with
infinite T is mapped to an RBN in the mean field theory.
Therefore, the behavior of the TN in the high T regime
(i.e. β = T−1 ≈ 0) can be interpreted as a perturbation
of the RBN. For the RBN model, the state σi ∈ {0, 1} of
a network node i is a logical function of the states of ki

other nodes chosen at random. The logical functions are
chosen at random, with a suitably biased probability. In
mean field theory, the RBN model shows a phase transi-
tion with respect to the number of inputs per node K at
a critical average connectivity 〈kc〉 = [2p(1 − p)]−1 from
an ordered to a chaotic state, where p is the probability
that the randomly chosen output of node i is unity. In
the chaotic state regime (K > 〈kc〉), a small perturbation
in the initial state propagates across the entire system,
whereas all perturbation in the initial state dies out in
the ordered state regime (K < 〈kc〉). The dynamics of
the RBN on a scale-free model has recently been inves-
tigated [11]. However, there seems to be no non-trivial
difference between the dynamics of the scale-free model
and that of the traditional RBN because the output state
of the nodes in the RBN is independent of the distribu-
tion degree, whereas in the TN the output state of the
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nodes depends on the number of inputs. Other studies
have shown that the critical average connectivity in a ran-
dom threshold network (in which linked nodes are ran-
domly chosen) is below 〈kc〉 = 2, which is in contrast
to the RBN, in which the critical average connectivity is
always 〈kc〉 ≥ 2 [15]. In the following, we measure the
propagation of a small perturbation in the initial state on
the scale-free, random-graph (Poisson distribution) and
small-world models, which allows us to evaluate the effect
of thermal noise and topological structure on the dynam-
ics of the TN.

2 Threshold network

We consider a network of N randomly interconnected bi-
nary nodes of state σi = ±1. In this model, the probability
distribution of outputs depends strongly on its degree pa-
rameters. At time t, the fields fi(t) of node i are computed:

fi(t) =
N∑

j=1

cijσj(t) + h, (1)

where the threshold parameter h is a natural number or
zero. The threshold characteristics often provide an intrin-
sic feature of the network, i.e. the threshold for neuron fir-
ing in the neural network model. The interaction weight
cij takes a discrete value cij = ±1, with equal possibil-
ity. In order to avoid self connection, we assume cii = 0.
If node i does not receive a signal from j, then node j
also has cij = 0. The degree ki of node i is defined as
ki =

∑N
j |cij |. The interaction weight cij is chosen from

all nodes but follows the probability distribution degree
P (k). For each node i, the state of the mode at time t + 1
is a function of the inputs it receives from other nodes at
time t

σi(t + 1) =

{
1, with probability G(fi(t)),

−1, with probability G(−fi(t)),
(2)

where G(x) = [1 + exp(−2x/T )]−1. We now introduce a
parameter T as thermal noise (temperature) of the system
to control the dependence of node states on their fields.
The N network nodes are idealized by synchronized up-
dating. Generalizing the so-called annealing approxima-
tion method introduced by Derrida and Pomeau [16], we
approach the system analytically in the limit of infinite N .
The normalized overlap function x obey the equation

x(t + 1) = F (x(t)), (3)

where the mapping function F (x) is given by

F (x) ≡ 1 −
K̃∑

k=1

ps(k, h, T )P (k)(1 − xk), (4)

with cutoff K̃. The normalized overlap function x(t) =
1 − d(σ(t), σ′(t))/N is obtained by subtracting the nor-
malized Hamming distance from unity, where the Ham-
ming distance d(σ(t), σ′(t)) denotes the overlap between

two time independent distinctive configurations. In the
N → ∞ limit, the function x represents the probability
for two arbitrary configurations to be equal. The possibil-
ity ps is the output state reversal obtained by changing the
state of a single input j. Using combinatorial methods [15],
the stochastic distribution of ps is derived as follows:

ps(k, h, T ) =
1

k · 2k

k∑

i=0

(
k

i

)

×
(

G(k + h − 2i)
(
k − (k − i)G(k + h − 2 − 2i)

− iG(k + h + 2 − 2i)
)

+
(
1 − G(k + h − 2i)

)

× (
(k − i)G(k + h − 2 − 2i) + iG(k + h + 2 − 2i)

))
.

(5)

The stationary value of the overlap function x∗ is obtained
by means of a fixed point equation x = F (x). The exis-
tence of a phase transition depends uniquely on the nature
of the fixed point x = 1. If the point is attractive, two ini-
tial configurations differing by an infinitesimal fraction of
nodes will become almost identical, whereas if the point
is repulsive, the configurations will produce diverging tra-
jectories. A possible critical point is then determined by
the following equation:

dF

dx
|x=1 = 1. (6)

Let us recall briefly the sufficient conditions for an at-
tractive fixed point x∗. Here, equation (4) must satisfy
(a) dF/dx ≥ 0 for all 0 ≤ x ≤ 1, (b) F (0) > 0 and
(c)dF/dx|x=1 > 1. For T = 0, ps is given by,

ps(k, h) =






(
k

(k + h)/2

)
/2k, for k + h is even,

ps(k − 1, h), for k + h is odd.

(7)

Moreover, for h = 0, (a), (b) are satisfied, and (c) is also
satisfied for any P (k) if P (0) = 0. The proof of (c) is
straightforward, and is given by showing that kps(k)−1 ≥
0 for ∀k ≥ 1, using asymptotically ps(k) ∼ k−1/2 for
large k. The fixed point x∗ = 1 is always repulsive, and
another fixed point x∗ < 1 is stable. Thus, independent
of P (k) for k ≥ 1, there is no phase transition and a
small perturbation/damage could propagate over the en-
tire system. In the following, we discuss the effect of the
distribution degree on the network dynamics.

3 Scale-free model

We first introduce the scale-free distribution degree
given by,

P (k) =

{
D, k = 0,

(1 − D)η(γ, K̃)−1k−γ , 1 ≤ k ≤ K̃,
(8)
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Fig. 1. Curve of critical value Dc as a function of γ having
cutoff K̃ = 100 and thresholds h = 0 (solid line), h = 3 (dotted
line), h = 6 (dashed line), and h = 9 (dot-dashed line).

where η(γ, K̃) =
∑K̃

k=1 k−γ , 0 ≤ D ≤ 1 and γ is usually
referred to as a scale-free exponent. Substituting equa-
tion (8) into equation (6) with T = h = 0, we obtain the
critical condition for D

Dc =
A(γ) − 1

A(γ)
, A(γ) = η(γ, K̃)−1

K̃∑

k=1

ps(k, 0)k1−γ .

(9)
Since 1 − ps(k, 0) ≥ 0 for ∀k ≥ 1, the critical average
connectivity 〈kc〉 = η(γ − 1, K̃)/(A(γ) ∗ η(γ, K̃)) has a
minimum value in the limit of infinite γ, i.e. 〈kc〉 = 1 is
realized when Dc = 0 (see Fig. 1). In Figure 2, we plot
the stationary overlap function x∗ for various threshold
parameters provided that T and D are set to zero. The
overlap function for h = 0 is shown to asymptotically ap-
proach x∗ → 1 with increasing γ, i.e. there is no phase
transition until average the connectivity reaches 〈k〉 = 1.
This result is different from the well known chaotic to or-
dered phase transition observed in RBN [9]. For the finite
threshold h, we observe that the equilibrium overlap x∗
increases as h increases, which suggests that the thresh-
old eliminates the memory of the initial condition and the
two different initial conditions become identical. For com-
parison, the curve of x∗ for the RBN is also shown. For
the low-γ regime, a perturbation is suppressed to a greater
degree in the TN with zero-threshold than in the RBN.
The opposite is observed for high-γ regime. The critical
point at which the strength of the perturbation reverse is
given by γs ≈ 1.754 in this model. This result supports
the findings of the numerical simulation shown in Figure 8
of [15].

The inset of Figure 3a shows the curve of the critical
scale-free exponent γc as a function of T for h = D = 0,
which distinguishes the ordered state from the chaotic
state. For finite T , dF/dx|x=1 in the large γ limit is

Fig. 2. Normalized overlap function x in equilibrium as a func-
tion of γ with h = 0(�), h = 1(�), and h = 2(×). The dashed
line denotes RBN with p = 1/2. The cutoff K̃ = 100, and the
temperature T = 0. The critical value γc does not exist (infin-
ity) for h = 0, but is 2.007 for h = 1 and 1.551 for h = 2; i.e.,
〈kc〉 = 1(h = 0), 〈kc〉 = 3.140(h = 1), and 〈kc〉 = 6.800(h = 2).
The inset shows the time evolution of the overlap function x(t)
with x(0) = 0.7 and γ = 2.5 for each threshold.

given by,

dF

dx
|x=1− =

1
(1 + exp(−2/T ))2

+
1

(1 + exp(2/T ))2
+ O(1/N). (10)

The existence of infinitesimal T which satisfies
dF/dx|x=1 < 1 results in a critical temperature
Tc = 0. The value of γc diverges at zero temperature, as
shown in the inset of Figure 3a. An interesting feature
of the 〈kc〉 curve is that it has a maximum 〈kc〉 value at
moderate T (Fig. 3a), which indicates that the thermal
noise can control the chaotic state and bring it into an
ordered state. In the infinite T limit, we obtain ps = 1/2
which is identical to that of the RBN with p = 1/2.
By substituting ps = 1/2 into equation (6), the critical
condition of the RBN is obtained.

η(−1 + γ, K̃)
2η(γ, K̃)

= 1. (11)

Since the average connectivity is given by 〈k〉 = η(−1 +
γ, K̃)/η(γ, K̃), we obtain 〈kc〉 = 2 from equation (11). In
the K̃ → ∞ limit, equation (11) is represented by the
Riemann ζ function, which gives γc ≈ 2.4788. Note that
〈kc〉 is independent of K̃ and γ, as well as all topological
structures, in the infinite T limit.

4 Random-graph model

In a random-graph model, the distribution degree follows
P (k) = e−KpKk

p /k!, where the parameter Kp is the aver-
age connectivity of the network. By solving equation (6),
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Fig. 3. (a) Critical average connectivity 〈kc〉 curve of the scale-
free model (solid line) and random-graph model (dotted line)
having h = 0 and K̃ = 100. The scale-free model has a maxi-
mum 〈kc〉 = 2.611 at T = 1.970, and the random-graph model
has a maximum 〈kc〉 = 2.199 at T = 1.683. Both models sub-
sequently converge to 〈kc〉 = 2 in the infinite T limit. The inset
shows the γ−T diagram of the scale-free model. In the chaotic
state regime (γ < γc), the overlap function in the stationary
state x∗ satisfies x∗ < 1. In the ordered state regime (γ > γc),
x∗ = 1. (b) Critical rewiring probability rc versus T for the
small-world model with average connectivity 2Kw = 2. This
rc curve also divides the system into two regimes, the chaotic
state (r < rc) and the ordered state (r > rc).

the critical average connectivity 〈kc〉 = Kp = 1.849 at
T = 0 is obtained as being identical to that reported
in [15]. The distribution degree with zero connectivity is
P (0) = 0.157. Comparing the T dependence on 〈kc〉 with
that of the scale-free model, the behavior of the random-
graph model is found to be less sensitive to T than that
of scale-free (Fig. 3a). However, both results have a com-
mon feature in that moderate thermal noise can extend
the regime of ordered dynamics in TN to higher average
network connectivity, compared to the zero-temperature
and high-temperature regimes. In both models, the crit-
ical average connectivity goes to 〈kc〉 = 2 in the infinite
T limit.

5 Small-world model

In a small-world model [2], we start with an ordered
state, in which each node has the same connectivity 2Kw.

By randomly rewiring each link between nearest-neighbor
nodes with probability r, we introduce non-uniform
connectivity into the network, while maintaining a fixed
integer average connectivity 〈k〉 = 2Kw. The probability
distribution degree is given by [17]

P (k) =
f(k,Kw)∑

n=0

(
Kw

n

)
(1−r)nrKw−n (rKw)k−Kw−n

(k − Kw − n)!
e−rKw ,

(12)
for k ≥ Kw, where f(k, Kw) = min(k − Kw, Kw). By
substituting equation (12) into equation (4), we obtain
the critical point, and equation (6) reveals that the critical
temperature Tc does not exist other than at Kw = 1. In
Figure 3b, the critical line T -r which distinguishes chaotic
and ordered states is given provided that Kw = 1. For a
given T , the region r < rc is a chaotic state, whereas the
region r > rc is a ordered state. We conclude that the
larger the dispersion of P (k), the smaller the regime of
the chaotic state.

6 Conclusion

We have investigated the dynamic properties of the
Threshold Network with thermal noise T on scale-free,
random-graph, and small-world models. If no threshold
h = 0 or thermal noise T = 0 exists, and if we have the
rate k = 0 of the distribution degree D = 0, we find there
is no phase transition with respect to average connectiv-
ity 〈k〉 in any network topologies. In the scale-free model,
the minimum critical average connectivity 〈kc〉 = 1 is ob-
tained provided that h = 0, T = 0, D = 0. In addition,
the relationship between robustness and the stochastic-
ity of the network has been clarified. Moderate thermal
noise between the TN and the RBN extends the regime of
ordered dynamics to higher average connectivity, i.e. sup-
presses the propagation of perturbation/damage, suggest-
ing a new aspect to, for example, the theory of neural net-
works with particular network topologies. By tuning the
thermal noise parameter in networks having asymmetric
connections (which are usually found in neural networks)
in which the basic unit (the neuron) follows threshold dy-
namics, the thermal noise, i.e. the non-zero error rate, may
in fact improve information processing, given structure
of the network topology. In this case, the thermal noise
and network topology would be associated with the stor-
age size, retrieval for patterns, or distribution of retrieval
errors. In the organization of the human brain, the con-
nection between neurons is not fully random, but rather
appears to have a small-world topology, because in this
type of neural network, the reduction in wiring costs [20]
results in a level equivalent to that of C. elegans [2]. As
a gene expression model, our model may provide an in-
teresting starting point if further study reveals how the
probability of gene expression depends statistically on the
connectivity. Extending these ‘toy models’ may lead to a
more realistic description of real systems.
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